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We analyze the quantization of dynamical systems that do not involve any 
background notion of space and time. We give a set of conditions for the 
introduction of an intrinsic time in quantum mechanics. We show that these 
conditions are a generalization of the usual procedure of deparametrization of 
relational theories with Hamiltonian constraint that allow one to include systems 
with an evolving Hilbert space. We apply our quantization procedure to the 
parametrized free particle and to some explicit examples of dynamical systems 
with an evolving Hilbert space. Finally, we conclude with some considerations 
concerning the quantum gravity case. 

1. I N T R O D U C T I O N  

The concept of time enters in the basic formalism of quantum mechanics 
in two ways: to mark the evolution of the system and to order a sequence 
of  measurements. In terms of  yon Neumann's (1955) axiomatic formulation, 
time enters as an evolution-labeling parameter in axiom IV, through the 
evolution equation (Schr6dinger equation) and implicitly in axiom II through 
the possible dependence of  the operators corresponding to observables on 
time. On the other hand, time appears as a sequence-ordering label in axiom 
V, through the fact that the outcome of a measurement depends on previous 
measurements. Furthermore, this time parameter is assumed to be given in 
advance. The picture that we get is a unit vector in a Hilbert space (which 
depends on the system and is given once and forever, following axiom I) 
with a smooth time evolution generated by the Hamiltonian operator via 
the Schrtidinger equation with discontinuous leaps corresponding to 
measurements. 
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The Dirac (1964) quantization procedure for constrained systems does 
not introduce major changes in this picture, considering that it assumes the 
existence of a nonvanishing Hamiltonian in addition to the set of constraints, 
and a standard Schr/3dinger equation with that Hamiltonian. There exists, 
however, a wide class of models for which, at the end of the application of 
the usual rules of thumb of quantization, one is left only with a set of 
constraint equations (in addition, of course, to the commutation algebra of 
the fundamental dynamical variables), with neither a nonzero Hamiltonian 
nor a natural choice of a time parameter. This situation is characteristic, 
for instance, of reparametrization-invariant systems (Sundermeyer, 1982), 
sometimes called generally covariant systems. The example of greatest physi- 
cal interest of this kind of theory is undoubtedly general relativity, where the 
problem is known as "the issue of time" (Kuchar, 1992a; Isham, 1992). 

Our aim in this paper is twofold. First we propose the necessary changes 
in the standard formalism of quantum mechanics in order to deal with the 
above-mentioned kind of systems, which we will call "totally constrained 
systems." This involves putting forward a prescription to slice the representa- 
tion space in which we will realize the commutation algebra of the dynamical 
variables into equal "time" spaces as well as defining this "time." Then we 
will explore the logical possibility of the slices being nonisomorphic. This 
could be considered, from the point of view of standard quantum mechanics, 
as a change in time or evolution of the Hilbert space describing the system. 

The motivation to consider the possibility of "evolving Hilbert spaces" 
comes from the suggestion due to Unruh (1993) that quantum gravity should 
have this property. The main point of his argument is the following: Does 
the Big Bang theory for the origin of the universe mean that because there 
was less space early, there were also fewer physical attributes that the universe 
had? His answer is yes and it is based on the fact that there should be some 
limit at the Planck length to the number of different values that any field 
could take. If this observation is true, one should describe the universe with 
a finite-dimensional Hilbert space and a set of operators which both change 
in time) This proposal seems to be very appealing both from a physical and 
philosophical point of view. In fact in a description of the universe in terms 
of fixed Hilbert space, the set of possible behaviors of the universe is fixed 
at all times from the very beginning. That means that the state that describes 
the present behavior of the universe with its enormous complexity was a 
vector of the Hilbert space since the Big Bang. In practice the observed 
evolution from the simple to the complex is nothing but the evolution between 
different possible behaviors. In quantum mechanics a system is identified 

3A similar proposal was made by Jacobson (1991). 
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with its Hilbert space, the set of all its possible behaviors (states). Hence, in 
this picture, the universe is given once and for all. 

Furthermore, if the Hilbert space is fixed, the initial conditions of the 
universe are not determined by its dynamical laws and the actual initial 
conditions remains completely unexplained. Hartle (1991) has stressed the 
reasons for searching for a theory for the initial conditions of the universe. 
Initial conditions are crucial to explain the large-scale homogeneity and 
isotropy of the universe, its approximate spatial flatness, the spectrum of 
density fluctuations, the homogeneity of the arrow of time, and the existence 
of a classical space-time. 

Of course, usual quantum mechanical systems, such as particles, are 
described by a fixed set of attributes such as position and momentum and a 
fixed Hiibert space, but for these systems we have no reason to expect 
different behaviors for different times, and in principle any conceivable initial 
state may be prepared by measuring a suitable complete set of commuting 
observables. 

In this work, as we said before, we are interested in the identification 
of an intrinsic time in totally constrained dynamical systems. We shall give 
a set of conditions for the definition of a physical time that generalize the 
usual deparametrization procedure. We shall see that the introduction of a 
physical time in these systems naturally leads to the possibility of evolving 
Hilbert spaces. 

Some systems that usually require the introduction of a nonpositive- 
definite inner product or a decomposition between positive- and negative- 
frequency states may now be quantized in terms of a positive-definite inner 
product with an evolving Hilbert space. In general, evolving Hilbert spaces 
seem to be naturally related to systems with boundaries or involving operators 
that satisfy a noncanonical algebra. 

As noticed by Unruh, evolving Hilbert spaces are naturally related to 
systems with a finite number of degrees of freedom. In fact, in the infinite- 
dimensional case, it is always possible to describe the system in terms of a 
fixed Hilbert space, but we shall prove that in this case relational systems 
may behave as the continuum limit of systems with a finite-dimensional 
evolving vector space. In particular, the transition amplitudes will remain 
invariant while the system evolves into the future, but the system will not 
be invariant under time reversal, and the evolution will not be unitary. We 
shall call this kind of infinite-dimensional system an evolving system. 

In Section 2 we introduce a description of the quantum mechanics of 
totally constrained dynamical systems and show that this description naturally 
generalizes the quantization procedure of deparametrizable systems. In Sec- 
tion 3 we apply this description to three examples: The parametrized classical 
free particle, a finite-dimensional constrained system with an evolving vector 
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space of states, and an infinite-dimensional evolving system associated with 
the Klein-Gordon model. 

Finally, in Section 4, we make some remarks concerning the application 
of this procedure to the quantum gravity case. 

2. T I M E  AND QUANTIZATION OF TOTALLY CONSTRAINED 
DYNAMICAL SYSTEMS 

We will assume that we have, in general, as the outcome of a standard 
Hamiltonian formulation of the theory under study a set of constraint equations 

+i(q~) = 0  with i =  1 . . . . .  n + 1 (1) 

written in terms of the dynamical variables qa, with a = 1 . . . . .  f,  of the theory 
as well as the commutation (or anticommutation) algebra of these variables 

[q~, qb]± = Ot~bqc + fA~b (2) 

Notice that if 

et~b = 0 (3) 

13ab = i (4) 

then qa and qb are canonically conjugated variables. From the algebra of  the 
q's follows the algebra of the constraints 

[dpi, ~j]+ = f k  (qa)d?k (5) 

which we assume closed (or the constraints to be first class), but allowing 
the "structure constants" to depend on the q's. We will assume furthermore 
that one of the constraints is singled out (as in concrete examples) from a 
physical point of view or considerations from the classical theory as containing 
implicitly the information about the time evolution of the system, and we 
will call it the Hamiltonian constraint ~ .  We will call the remaining n 
constraints kinematic constraints ~bi. 

In order to have a sensible quantum theory from the previous information 
we need to follow several steps. 

The first ones, more or less straightforward, are: 
1. To find a vector space %R, which we will call representation space, 

in which realize the algebra of the q's. 
2. To construct the subspace %K, which we will call kinematic space, 

given by the solutions I t~K) of the whole set of kinematic constraints 

~i l~K) = 0 (6) 

3. To construct the subspace %F, which we will call physical space, 
given by the solutions I~F) of the whole set of constraints 
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~b,-I ~r) = 0 (7) 

~Wq'F) = 0 (8) 

At this point we will consider a function T(qa) of the dynamical variables 
and we will discuss which conditions should be satisfied by this function in 
order for it to be considered a time variable for the system. 

I. The first condition that we will require is 

[T, ~i] = 0 and [T, ~ ]  v~ 0 (9) 

The vanishing of the commutator between T and ~bi implies that T is a 
well-defined operator in %x (TI ~K) ~ %x), while the nonvanishing of the 
commutator between the Hamiltonian constraint and T, together with condi- 
tions III and IV, ensures that the Hamiltonian restricts the evolution in t of 
the wavefunctions. This condition is not independent of the other conditions. 
In fact, if the Hamiltonian commutes with T, condition IV obviously fails. 

II. We will require that the eigenvectors of T span the kinematic space 
%K. In other words, there exist a basis Ix, t) of %x such that 

Ttx,  t) = tlx,  t) (10) 

where the x corresponds to additional labels necessary to characterize the 
vector unambiguously. 

We shall consider the vector space %Kt defined as the subspace of %K 
spanned by Ix, t) for a given t. One can define an analogous vector space 
%F~ with the projection of the vectors of the physical space 

~IF) = ~ ~JFt(X, t) IX, 0 (1 l) 
xl 

for a given t 

It OF, t) = ~ +Ft(X, t) lx, t) (12) 
x 

%F, may be considered as the projection of %F on %K,. We will introduce 
evolving systems by considering the logical possibility that the components 
of a given ~JF(X, t) of vectors in the physical space I+F) might vanish identi- 
cally for t < to. Thus, one may classify these vectors by the value to. We 
shall say that I t~)  is from level to if and only if 

+~(x, t) --= 0 Vt < to 

We will consider now the operators Oi(qa) in %x that commute with all 
the constraints (including the Hamiltonian constraint). Following Kuchar, we 
shall call these operators perennials. 
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III. The next condition that we are going to require is that there exist a 
subset of %rt, denoted %~,, with a positive-definite inner product 

(qSKI dPK), = X ~(X,  t)dPx(X, t)~(X, t) (13) 
x 

and that there is a set of perennials such that: 

(a) They are self-adjoint with this inner product, provided their classical 
counterpart be real, and commute with T, [T, O,-] = 0. 

It follows that this subset of operators does not mix vectors lying in 
different time sections, which implies that they are block diagonal in %K; in 
other words, 

and 

OiC~Kt ~ ~Kt (14) 

OiC~FI C C~Ft (15) 

(b) Their eigenvectors in %F,; labeled by I~-~, t), satisfy 

O i [ I~J~ai, t) = o/. i I I~J~aai , t) (16) 

for any t and o/. i independent of t. 
The eigenvectors corresponding to different eigenvalues are orthogonal. 

(c) Their restriction to %Ft is a complete set of commuting observ- 
ables (CSCO). 

We impose that the inner product in %~t (induced by the inner product 
in %~t) is such that the eigenvectors of the perennial operators satisfy the 
orthonormality condition 

(~g t~13), = 0(t -- t~)O(t - t~)~f~ (17) 

where 0(t - t,~) is the Heaviside function. 
Notice that a basis in %~, includes all the vectors I ~,~) of level less than 

or equal to t. 
We are going to be interested in considering as physical observables, 

not only constants of the motion, but more general operators. We shall call 
an operator A an observable if and only if 

[A, ~3,-] = [A, T] = 0 (18) 

and therefore A is block diagonal in %x, A is self-adjoint with respect to the 
inner product, and the eigenvectors of A expand %Kt- Notice that while we 
have required that any perennial commuting with T is self-adjoint, here one 
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may have classical real dynamical variables that are not associated with a 
self-adjoint operator and consequently they are not observables. 

IV. The last property that we shall require for our time variable is that 

~ t  ---- %~t (19) 

This condition essentially implies that the Hamiltonian constraint determines 
the evolution of  the states, but it does not restrict their functional dependence 
at a given t. 

In general, A I ~r) will not be an element of %F. However, condition IV 
allows us to determine a vector of  the physical space that coincides in %, 
with any eigenvector of  A. Let 

A t a~, t) = a~(t) l a~, t) (20) 

Then the restriction of  the physical state 

l *e (a , ,  to)) = ~ ( ~ ,  la~, t0)t01d~,) (21) 
ot 

ta<--tO 

to %x+ is equal to l a~, to), and then 

= t .  ta t )  t (22) (x, t t a0., t) ~ (x, t l ~F,~),(~F~ I a~, 
ot 

ta<--t 

Notice that from condition III it follows that I t~r(a¢, to)) exists and is unique; 
therefore we know how to compute the transition amplitudes between the 
eigenvectors of  two observables A and B at different times, 

= "~ "~ t), (23) (by, t ' l l  a¢, t) ~ (b~, t'ld?F),,(t~F la ~, 

ta<---t 

where we have introduced the notation (11) to distinguish the transition 
amplitudes from ordinary inner products at t. In another form we have 

(b~,, t' I1 a~, t) = (~F(bv, t ' ) l~F(a~,  t ) ) t '  (24) 

These amplitudes contain all the basic information required to determine the 
evolution of  the system. Notice that within this context neither all the perenni- 
als are observables nor all the observables are perennials. 

The state I d~F(a~, to)) has been prepared by the measurement of  the 
observable A at time to. Notice that two states prepared at times to and tl are 
such that (d)F(a ~, to) l~F(bv, tt)) is time independent for all t --> to and t -> 
t~; this is the "unitarity" condition for  an evolving system. 

In the next section, we shall see that these conditions define a natural 
extension of the deparametrizable systems. 



2064 Doldfin, Gambini, and Mora 

3. D E P A R A M E T R I Z A B L E  M O D E L S  

In this section we want to determine the set of  necessary and sufficient 
conditions that a totally constrained dynamical system should obey in order 
to be deparametrizable. We are going to prove that the set of conditions given 
in the previous section contains as a particular case the deparametrizable 
systems. Consequently our formalism may be considered as an extension of 
the usual quantization procedure for deparametrizable systems. In a deparame- 
trizable model there is a (noncanonical) transformation leading from the 
original set of dynamical variables q,~ to a new set of  variables T, Pr, and 
k,,, a = 1 . . . . .  f -  2, satisfying the algebra 

[k~, kh]+ = ot~bkc + fSab (25) 

[T, PT]- = i (26) 

[ka, T]_ = [k~, Pr]- = 0 (27) 

such that the Hamiltonian constraint takes the form 

= PT + H(k. ,  T) (28) 

The other kinematic constraints have the form 

~bj(k,,, T) = 0 (29) 

Here we shall restrict our analysis to the case where the only constraint is 
the Hamiltonian constraint. The generalization of the following considerations 
to the case in which there is a set of  time-independent kinematic constraints 
~bj(k,,) = 0 is straightforward. 

From the algebra it follows that we can write the representation space 
as a tensor product of two spaces %R = %r ® %Q in which one realizes on 
one hand T and PT and on the other hand the k,. We will choose the basis 

Ix, t) = Ix) I t) (30) 

where x corresponds to the set of labels required to specify the vector in %0- 
An arbitrary vector in %R will be 

ItS) = ~ O(x, t ) l x ) l t )  (31) 
x /  

A positive-definite inner product is introduced in %Q, 

(~l~b) = ~ ~*(x, t)qb(x, t) (32) 
x 

such that H is a Hermitian operator in %Q. 
The action of the operators will be 
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Try(x, t) = t~(x, t) 

0 
pT-t~(x, t) = - i  Ot ~(x, t) 

(33) 

(34) 

k.qJ(x, t) = ~]  (~:o).~,+(x', t) 
X '  

(35) 

With these definitions the Hamiltonian constraint 

~ I + F )  = [PT + H(k~, 73]+F) = 0 (36) 

becomes a Schr6dinger equation 

0 
- i  Ot t~F(X, t) + ~ (H(t))~,~(x' ,  t) = 0 (37) 

X f 

Such systems will have f - 2 constants of the motion (or perennials) 
Oi(k~, t) associated to the initial conditions of the system. They satisfy 

i 0 0  
- -  - [ n ,  O]  = 0 ( 3 8 )  

Ot 

Now, a complete set of compatible perennials defines a nondegenerate 
basis on EQ, 

Oi(to)  I a i )  = •i l O~i~ (39) 

and 

I ~ ' ,  t) = U(t, to) lai)lto) (40) 

where U is the evolution operator in EQ, 

i OU 
- H U  ( 4 1 )  

Ot 

The vectors I ~  i, t) are eigenvectors of Oi(t) with eigenvalues O/. i and span 
the physical space. Thus, there is an isomorphism for any to between the 
restriction %~t0 and %~ which is also isomorphic to %~to, spanned by Ix) l to). 
To conclude, in the case of a deparametrizable system, conditions I, II, and 
IV, hold while condition III is satisfied with the usual time-independent inner 
product and the eigenvectors of the complete set Oi obey the orthonor- 
mality conditions 

(t~Fc, i [ OFaj)t = (0~ i I OLj) = ~ij (42) 

instead of (17). Thus, all the states are of the same level t = tt, taken as the 
origin of time. 
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Let us now study the converse. Let T(q) be a time variable satisfying 
conditions I - IV in the particular case that all the states are of level t = tt 
and let the inner product have the form (32). Let Oi be a complete set of 
observables with eigenvectors I~F~) that form a complete basis on %E = 
%~t and therefore satisfy the closure relation 

It~F,, t)(Or~, tl = It (43) 

where /, is the identity operator in %~,. Given an arbitrary state I qb) e 
%~,o, there is a vector of the physical space I qbF) 

= o ( 4 4 )  
C( 

such that I qbF, to) = I qb). That implies 

qbF(X, t) = ~ ~ ~F~(X, /)O~(X', to)d~(X', to) 
Ot X'  

= ~ D(x, t; x', to)dp(x', to) (45) 
X' 

Making use of the orthonormality conditions (17) for vectors of level h, one 
can show that this relation is invertible. Thus one can write 

ao ao 
i --~ (x, t) = x' ~.e' i --~ (x, t; x", to)D(x", to; x',  t)~(x',  t) 

= ~ H~,qb(x', t) (46) 

It is immediate to show from (45), making use of  (43) and (17), that the 
inner product is conserved, @1 qb), = (~ I q b), 0, and therefore the Hamiltonian 
H is Hermitic. Thus we recover the SchrOdinger equation for a deparametriza- 
ble system. One can easily prove by making use of (46) and the definition 
of the perennial operators that they also satisfy the evolution equation (38). 
Consequently the set of conditions given in the previous section is a general- 
ization of the usual quantization procedure for deparametrizable systems. In 
the next section we will show several examples of evolving systems. 

4. APPLICATIONS 

We now apply the set of conditions that we have just established to 
several systems that require an intrinsic definition of time. The first and 
simpler example is the parametrized free particle in 1 + l dimensions. As 
a second example we consider a discrete constrained system with an evolving 
Hilbert space. As a third example we consider a continuous system that 
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behaves as the continuum limit of the previous model. We introduce a unitary 
isomorphism that will allow us to describe this system in a fixed Hilbert 
space. We prove that the system still has perennials with new eigenvalues 
and eigenvectors at each level t satisfying the generalized orthonormality 
condition (17). 

4.1. The  Parametrized Particle 

The parametrized particle obviously is a deparametrizable system and 
therefore there is a time variable satisfying conditions I-IV. However, it is 
interesting to discuss how these conditions determine the time variable. The 
dynamics of the parametrized particle is contained in the Hamiltonian 
constraint 

= P~ +--P2~ = 0  (47) 
2m 

which is quadratic in the momentum P2. Let us make the natural choice t = 
x~. At the quantum level the kinematic space %r is given in the basis I xt, 
x2) by functions +(xl, x2), while the physical space is restricted by the Hamilto- 
nian constraint 

~0F(xl,  x2) = - i  3xl 2m 3x~ - 0 (48) 

The physical states may be written in terms of the Fourier transform as 

,F(X, ,Xz)=-~f~dp2ei~p2x ' - -~ ' (P2'x ' ) f (p2 ) (49) 

where 

1 
~(P~) = ~m p2 (50) 

We introduce the inner product of two physical states ~l and ~2 in ~Ft, 

(~1 ll~J2)t = f dx 2 iJ/~(xl, x2)~2(x2, x2) (51) 
h ~X 1 

In this particular case, the vector spaces %Ft for different t are isomorphic. 
The perennial operators that commute with the time operator X~ are 

P2 and X2 - P2 X~ (52) 
m 

and a complete set of commuting perennials is formed by P2, which obviously 
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is self-adjoint with the inner product (31) and satisfy condition II. Their 
eigenvectors 

~JFp2(XI, X2) = ei(p2x2-~lp2)xl) (53) 

form an "improper" orthonormal basis of the physical state space, in accord 
with condition III. Finally, it is immediate to check that any square-integrable 
function ~(x °, x2) belonging to %~?, the functional space of fixed xl = x °, 
may be expanded in terms of the ~JFp2(X °, X2) that form a complete basis of 
the kinematic space at x °. Thus the complete set of conditions is satisfied 
and the usual formalism of quantum mechanics is recovered with xt as the 
intrinsic time of the system. Before concluding this example, let us briefly 
mention what happens if we take as a "time variable" the coordinate x2. 
Conditions I and II still hold, but one can easily check that III and IV cannot 
be simultaneously satisfied. 

4.2. A Relational System with a Finite Dimensional Evolving 
Hilbert Space 

In this example we show a system where the set of conditions for an 
intrinsic time holds provided its Hilbert space evolves in time. This kind of 
model shows how evolving Hilbert spaces arise within this approach. 

We consider a system formed by the tensor product of two subsystems 
with angular momentum j, integer, 

¢~K ---- {I j,  mr) @ I j, m2) ~ Iml, m2) , mt --> m2} 

The system is constrained by a Hamiltonian constraint 

where 

(54) 

Jolrnl, m2) = 2(j + m2 + 1)Irnl, m 2 + 1) (56) 

J1 I ml, m2) = 2(j + m2) I ml, m2) (57) 

We introduce a discrete time operator in %K such that 

Tirol, m2) = (2j - mt + m2)lml, m2) = tlmt, m2) (58) 

One can easily see that 0 -< t -< j.  Any state of the basis I ml, m2) in %K may 
be labeled by the value of t and the total third component of the angular 
momentum M. 

We have 

= Jo - Jt (55) 
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t = 0  l j , - j )  ~ t t = 0 ,  M = 0 )  d im%K0= 1 

I j -  1 , - j )  
t =  1 I j , - j +  1) ~ I t =  I , M =  ±1)  dim%K1 = 2  

Ij - 2, - j )  It = 2, M = ±2)  
I j -  1 , - j +  1 ) ~ l t = 2 ,  M = O  ) 
l j ,  - j  + 2) 

t = 2  d i m % x 2 = 3  

with 

(59) 

d i m % x , =  t +  1 

and M + t --- 0. The physical state space is defined by functions t~F(t, M)O(M 
+ t) such that 

(M + t)[~r(t, M) - +F(t - 1, M - 1)] = 0 (60) 

The operator Jl~, explicitly given by 

Jtzt~(t, M) - -~(2j - t + M)~(t, M) (61) 

is a perennial and commutes with T. The eigenvectors of  J~z define a basis 
in the physical state space 

~ J - - m l [  ~ 
Fm I ~, ,  M )  = ~ M , 2 m l _ 2 j + t O ( l  - -  j + ml) (62) 

These wave functions vanish for t < j - ml and therefore they have level j 
- -  m l "  

The inner product 

(t~ldp), = ~ ~*(t, M)~b(t, M) (63) 
M = - t  

ensures the Hermiticity of J~:, and the inner product between the elements 
of  the physical basis satisfies the orthonormality condition 

• o l . J - r n | \  (~JF-mTllwrm~ /, = ~m~miO(t -- j + ml) (64) 

Thus conditions I-III  are satisfied, and the last condition also holds; in fact, 
any function of M at a given t may be obtained by superposition of elements 
of the physical basis "h:-mttt wr,.~ ~, M) at this t. 

Now, it is very easy to compute a transition amplitude between two 
eigenstates of any observable. For instance, if we consider the operator J2.. 
given by 

J2zt~(t, M) = ½(M - 2j + t)~(t, M) (65) 

then it is self-adjoint and commutes with T. Now at time t = 1, It = 1, M 
= 1) is an eigenvector 
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J z z l l , l ) =  (1 - j )  l l ,  1) (66) 

If we label its eigenvectors at time t by I m2, t), the transition amplitude 
between this state and I mz = - j  + 1, t) is given by 

(m2 = - j  + 1, t = l llm2, t) = ~,,z._j+t (67) 

4.3. An Evolving System with an Infinite-Dimensional Hilbert Space 

Evolving systems in continuum space with a continuous intrinsic time 
may be simply introduced. The following example is the continuous extension 
of the model that we have just considered in Section 3.3: 

% K =  {la ,  b ) , a , b  ~ R , a  > b , - I  < - a , b  <-- 1} (68) 

with Hamiltonian constraint 

4(a - 1)(b + 1) 0-~ ~(a, b) = 0 (69) 

Then if one chooses as a time variable t = 2 - a + b, and x = a + b, the 
Hamiltonian constraint takes the form 

~ ( x , t )  = (x 2 -  t a) ~ ( x , t )  + Oxx~(X't) = 0  (70) 

A complete set of perennials satisfying condition III is given by 

A~(x,  t) = ate(x, t) (71) 

with eigenvectors belonging to the physical space given by 

~ ( x ,  t) = ~(x - t + 2 - 2a)0(t - 1 + a) (72) 

The inner product is given by 

I_ ~t (t~ I ~b), = dx +*(x, t)+(x, t) (73) 
l 

and the eigenfunctions satisfy the orthogonality condition 

i-a l-~ ½~(a a')O(t + a') (74) (+F~ +F~" ) , =  -- -- 1 a)O(t--  1 + 

Thus, conditions I - IV obviously hold in this system, which describes waves 
propagating in a region bounded by the future light cone. Now we have a 
description in terms of an inner product with a time-dependent measure. In 
the continuous case it is always possible to introduce a unitary isomorphism 
between the Hilbert spaces at two different times. Let us consider this transfor- 
mation in the present case. 
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Let 

Then 

t~'(x, t) = ~'tt~(xt, t) (75) 

f (t~'(t) I qb'(t)) = dx ~'*(x, t )+' (x ,  t) 
1 

f_ = du ~*(u ,  t)+(u, t) = (~l~b)t (76) 
l 

where u = xt. Thus the unitary transformation is given by 

U~(u, x)  = ,ftt~(u - x t)  = U,(x, u) (77) 

and the eigenvalue equation for the perennial operator takes the form 

A d~a(x, ' = [ x t  ~ t + l ] ~ ' ( x ,  t) = a~ ' ( x ,  t) (78) 
L Z _l 

while the Hamiltonian constraint now becomes 

~,d~,(x,  t) = (x2t2 _ t2 ) [ ( l  - x) O + O 1]  
t Ox 0 t -  2t ~'(x, t) = 0 (79) 

A complete set of eigenvectors of the perennial operator belonging to 
the physical space is 

d/F~a-a(x, t) = ,,/~[(X -- 1)/ + 2 -- 2a] (80) 

Notice that these solutions still have level 1 - a and satisfy the orthogo- 
nality condition 

(~lF-J(t) ld~,~'( t ))  = ½ ~ ( a -  a ' ) O ( t -  1 + a ) O ( t -  1 + a ' )  (81) 

Thus, we see that the fundamental properties of the evolving relational 
systems-- the appearance of new eigenvalues and eigenstates at each level 
and the conservation of the inner product among states of  level to for any t 
--> t0--are still present in this description in terms of a fixed Hilbert space. 
In general, evolving Hilbert spaces seem to be naturally related to systems 
with boundaries. For instance, the system we have just analyzed may be 
simply generalized to a Klein-Gordon system ~ = P~ - P~ in a bounded 
region R = (x, t): t 2 - x 2 --> 0. This system may be treated as a deparametrizable 
system by introducing a time variable "r = (t 2 - x2) ~/2 leading to a usual 
Klein-Gordon equation with a nonpositive-definite inner product. However, 
an equivalent Hamiltonian in the bounded region ~ '  = (x + t)(p2t - P~) 
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may be quantized with a positive-definite inner product in an evolving Hil- 
bert space. 

5. CONCLUSIONS AND FINAL REMARKS 

We have introduced a notion of intrinsic time in relational systems that 
allows us to recover the fundamental features of time in quantum mechanics. 
In the case of any standard quantum mechanical system in parametrized form 
our method reproduces the usual formalism of quantum mechanics. 

However, the method allows us to include relational dynamical systems 
and leads naturally to quantum mechanical systems with an evolving Hilbert 
space. In that sense we are implementing the intuition that one can define 
fixed-time Hilbert spaces that contain subsets of all possible states of the 
system. These systems are not invariant under time translations or time 
reversal and have a defined arrow of time. The initial state of the system, as 
well as the evolution of the Hilbert space, are determined by the Hamiltonian 
constraint and therefore dictated by the dynamics. The number of accessible 
states increases in time. 

Let us conclude with some final comments about the quantum gravity 
case. Even though very little is known about the physical state space of 
quantum gravity, a pure gravity system could behave as an evolving system 
of this type. In fact, it is natural to take as the configuration space of quantum 
general relativity the loop space (Rovelli and Smolin, 1990), because in this 
representation the domain of the wave functions seems to be simply related 
to the microscopic structure of space-time. In the loop representation, the 
kinematic space %K is given by the knot-dependent functions (Rovelli and 
Smolin, 1990) ~[K] that satisfy the diffeomorphism constraint. As a candidate 
for the intrinsic time t, we would like to take a variable such that the simplest 
configuration corresponds to its initial value. A good candidate seems to be 
the minimum number of crossings of a knot; this knot invariant quantity may 
be used to characterize the complexity of each knot. The kinematic space of 
quantum gravity will be characterized by wave functions ~(t, K), where K 
are the remaining knot invariants necessary to describe a knot with a minimum 
number of crossings equal to t. If we do not include knots with more than 
triple self-intersections, the number of independent knot invariants with a 
fixed t is finite and increases with t. Of course, if we want to take as a time 
variable some knot invariant such that the number of independent knots and 
the dimension of the kinematic space increase with t, there is not a unique 
choice. For instance, one could define as time the degree of a universal 
polynomial associated with the link. However, it is not known how to classify 
any knot in terms of knot polynomials in such a way that inequivalent knots 
always correspond to different polynomials. 
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In general relativity no perennial is known, but a candidate for observ- 
able, in the sense used in this paper, is given by the volume of the universe. 
The eigenstates of the volume operator are knot states having a definite 
number of crossings and intersections and its eigenvalues are essentially 
proportional to the Planck volume times the number of intersections. This 
operator does commute with the diffeomorphism constraint and with our 
"time" and does not commute with the Hamiltonian constraint. These are the 
conditions required for our observables. The naive picture of the Big Bang 
that we get is a unique zero-volume state that evolves with certain probabilities 
to different states of finite volume. Within this description the recollapse of 
the universe will be associated with a decreasing volume, while the complexity 
of the knot space is still growing. Unfortunately, it does not seem to be easy 
to check a proposal of this type on a simple cosmological model. In fact, 
in that case the knot structure related to the diffeomorphism invariance is 
not present. 
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